Healthcare-associated infections in Europe: the state of play

Dominique L. Monnet, Head of Disease Programme ARHAI

Health First Europe webinar “Pathways for fostering patient safety across Europe: Learning from regional success stories”, 8 September 2020
Six sigma quality comparisons defect rates

Healthcare-associated infections (ECDC PPS, 2016-2017)
• An agency of the European Union, located in Stockholm, Sweden
• Founded in 2005; nearly 300 employees
• Mandate to ‘identify, assess and communicate current and emerging threats to human health from communicable diseases’
• European Union (EU) (27) and European Economic Area (EEA) (3) = 30 countries with a total of more than 450 million people

www.ecdc.europa.eu
ECDC point prevalence surveys (PPSs) in acute care hospitals and long-term care facilities, 2016-2017: prevalence and estimated incidence of healthcare-associated infections (HAIs)

<table>
<thead>
<tr>
<th></th>
<th>Acute care hospitals</th>
<th>Long-term care facilities (LTCFs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of facilities, EU/EEA countries</td>
<td>1209 hospitals, 28 countries</td>
<td>1788 LTCFs, 23 countries</td>
</tr>
<tr>
<td>Number of included patients/residents</td>
<td>310 755</td>
<td>102 301</td>
</tr>
</tbody>
</table>
| Patients/residents with a least one healthcare-associated infection on any given day | 6.5%*
1 in 15 patients | 3.9%*
1 in 26 residents |
| Healthcare-associated infections each year (estimated total) | 4.5 million | 4.4 million |

*Country-weighted and corrected after validation.
Burden of healthcare-associated infections (HAIs)

HAIs account for **twice the burden** of 31 other infectious diseases

- **Approx. 9 million HAIs** each year in acute care hospitals and long-term care facilities in the EU/EEA (3)
- **91,000 deaths** each year directly attributable to HAIs in acute care hospitals in the EU/EEA (1)
- **35–55% of HAIs preventable** with multifaceted interventions, depending on type of HAI (4)

Patient safety, healthcare-associated infections and antimicrobial resistance

Adverse events/patient safety

Healthcare-associated infections

Healthcare-associated, antimicrobial-resistant infections (selected MDROs)

Community-acquired infections

Community-acquired, antimicrobial-resistant infections

Composite index* of antimicrobial resistance (AMR) in healthcare-associated infections from acute care hospitals, EU/EEA countries and Serbia, 2016-2017

*Percentage of isolates resistant to first-level antimicrobial resistance markers in healthcare-associated infections, i.e.:
- *Staphylococcus aureus* resistant to meticillin (MRSA),
- *Enterococcus faecium* and *Enterococcus faecalis* resistant to vancomycin,
- Enterobacteriaceae resistant to third-generation cephalosporins,
- *Pseudomonas aeruginosa* and *Acinetobacter baumannii* resistant to carbapenems.

* Bulgaria and the Netherlands: poor national representativeness of acute care hospital sample;
** Norway: national protocol;
Norway and UK-Scotland did not collect microbiological data.

Main actions to prevent and control antimicrobial resistance

Prudent use of antimicrobial agents
(only when needed, correct dose, correct dose intervals, correct duration)

Infection prevention and control
(hand hygiene, screening, isolation)

New antimicrobial agents
(with a novel mechanism of action, research, development)
Countries with a higher prevalence of antibiotic use have a higher composite index of AMR, but countries with more frequent review and change of antibiotic prescriptions have a lower composite index of AMR.

*Antibacterials for systemic use (ATC J01)

Countries with more resources for infection prevention and control have a lower composite index of AMR

Preliminary results

- Beds with alcohol hand rub dispenser at point of care (%): $r = -0.57$, $p = 0.003$
- Beds in single rooms (mean %): $r = -0.58$, $p = 0.004$

Additional preliminary result: Hospitals with at least 0.4 FTE infection prevention and control nurse for 250 beds ($r = -0.35$, $p = 0.04$)

Determinants of composite index of AMR
(multiple ordinal logistic regression, n=625 acute care hospitals)

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Regression coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of antimicrobial use (% patients with at least one antimicrobial)</td>
<td>0.032</td>
<td><0.001</td>
</tr>
<tr>
<td>Antimicrobial prescriptions reviewed and changed during treatment (%)</td>
<td>-0.006</td>
<td>0.026</td>
</tr>
<tr>
<td>Beds with alcohol hand rub dispenser at point of care (%)</td>
<td>-0.005</td>
<td>0.013</td>
</tr>
<tr>
<td>Beds in single rooms (% beds)</td>
<td>-0.015</td>
<td>0.001</td>
</tr>
<tr>
<td>Infection prevention and control nurse staffing levels (FTE / 250 beds)</td>
<td>-0.178</td>
<td>0.001</td>
</tr>
<tr>
<td>Case-mix severity (predicted HAI prevalence)</td>
<td>0.106</td>
<td>0.009</td>
</tr>
<tr>
<td>Blood culture use rate (N per 1000 patient-days)</td>
<td>0.000</td>
<td>0.944</td>
</tr>
</tbody>
</table>

Economic assessment* of a ‘mixed-intervention’ package†
Just a few Euros more lead to substantial savings in healthcare expenditure

In the **EU/EEA and the UK**, €1 spent on these interventions would save approx. €2.5

Implementation cost

Impact on healthcare expenditure

†‘Mixed-intervention’ package:

- **Improve hospital hygiene**
 (starting with hand hygiene)

- **Antimicrobial stewardship**

- **Rapid diagnostic tests**
 (bacterial vs. viral infection)

- **Delayed prescription**

- **Public awareness campaigns**

Source: OECD. Stemming the Superbug Tide: just a few dollars more. 2018. oe.cd/amr-2018

*Including effect on susceptible infections.
Antimicrobial resistance (AMR) and COVID-19?

'Yes, AMR will increase’

- About 70% hospitalised COVID-19 patients receive antibiotics (Rawson et al., Langford et al.)
- Often broad-spectrum antibiotics, empirically (Rawson et al.)
- Secondary bacterial infection in 16% (95% CI: 11-20%) hospitalised COVID-19 patients (Langford)
- AMR control and antimicrobial stewardship efforts may be temporarily discontinued
- Difficulties to comply with infection prevention and control because of increased workload
- Self-medication with antibiotics may increase

'No, AMR will not increase’

- Bacterial infection in 8% hospitalised COVID-19 patients vs. 11% in non-COVID-19 patients (Rawson et al.)
- Bacterial co-infection (estimated on presentation) in only 3.5% (95% CI: 1-7%) patients (Langford et al.)
- Increased compliance with hand hygiene and other infection control measures in healthcare; COVID-19 cohorting units
- Fewer admissions of chronically ill patients
- Planned surgical interventions postponed
- Increased hand hygiene in the community
- Less patient transfers between countries and interruption of international travel

Conclusions

• Healthcare-associated infections represent the largest health burden of all infectious diseases in the EU/EEA (COVID-19 not included)
• Up to one half of these HAIs are preventable
• Challenge = local implementation of prevention and control measures
• Structure and process indicators of infection prevention and control and antimicrobial stewardship in all ECDC protocols for HAI surveillance.
• Monitoring and benchmarking of countries, hospitals, wards and long-term care facilities on these indicators should contribute to improving practices, and subsequently reducing HAIs and AMR in Europe.
Thank you!

EUROPEAN ANTIBIOTIC AWARENESS DAY

A EUROPEAN HEALTH INITIATIVE

18 November 2020

E-mail: EAAD@ecdc.europa.eu
Website: http://antibiotic.ecdc.europa.eu
Facebook: EAAD.EU
Twitter: @EAAD_EU (#EAAD #KeepAntibioticsWorking)
Global Twitter: #AntibioticResistance

WORLD ANTIBIOTIC AWARENESS WEEK
18-24 NOVEMBER 2020